Atherogenic Dyslipidemia (AD)

Estimated reading time: 5 minutes

Atherogenic dyslipidemia (AD) is an abnormal blood lipid pattern characterized by elevated triglycerides (TG) and low levels of high-density lipoprotein cholesterol (HDL-C). Hence, people with AD have an elevated TG/HDL-C ratio (1).

A considerable proportion of patients at risk of coronary events in routine clinical practice have high levels of TG and low levels of HDL-C.

AD is a very common clinical disorder, mostly due to the rapidly increasing prevalence of abdominal obesity and metabolic syndrome. 

Atherogenic Dyslipidemia (AD)
Atherogenic Dyslipidemia (AD) often tends to be overshadowed by the huge emphasis on modifying low-density lipoprotein cholesterol (LDL-C) However, many individuals with normal LDL-C develop CAD. A large proportion of these patients may have AD.

AD is associated with an increased risk of developing coronary artery disease (CAD) as well as an increased risk of new events in patients who already have established CAD (2,3).

Studies suggest that AD may be present in up to 40% of patients with CAD (3).

AD often tends to be overshadowed by the huge emphasis on modifying low-density lipoprotein cholesterol (LDL-C) However, many individuals with normal LDL-C develop CAD. A large proportion of these patients may have AD.

Diet is the cornerstone of treatment in patients with elevated triglycerides and low HDL-C. Evidence suggests that carbohydrate restriction may effectively improve many of the metabolic abnormalities associated with AD.

Atherogenic Dyslipidemia is Associated with Other Important Lipid Abnormalities

Patients with AD frequently have other lipid abnormalities that may help to explain why their risk of atherosclerotic cardiovascular disease is increased. Apolipoprotein B (apoB) levels are often elevated and so is the presence of small low-density lipoprotein (LDL) particles (4).

Furthermore, increased remnant lipoproteins are often present in high amounts (5). ApoB is a marker of the amount of all atherogenic lipoprotein particles. It is highly associated with the risk of developing CAD (6).

The risk of heart disease  is associated with an increase in the levels of small, dense LDL particles (7). The presence of small LDL particles is associated with high TG and low HDL-C. Interestingly, the TG/HDL-C ratio may be a valuable predictor of the number of small LDL particles (8).

Remnant lipoproteins, such as very-low-density lipoprotein (VLDL) and intermediate-density lipoprotein (IDL), may contribute importantly to the risk of atherosclerotic heart disease in patients with AD (9). These remnant lipoproteins typically contain large amounts of TG as well as cholesterol (remnant cholesterol). It is now commonly accepted that small, dense LDL particles are the products of remodeling of TG-rich VLDL particles (10).

In summary, high levels of ApoB, large amounts of small, dense LDL particles, and high levels of TG- and cholesterol-rich remnant lipoproteins may all help to explain why patients with AD are at increased risk of heart disease.

Atherogenic Dyslipidemia is Associated with Metabolic Syndrome and Type-2 Diabetes 

AD is characteristically found in patients with abdominal obesity, metabolic syndrome, and type-2 diabetes (11) Insulin resistance is a common nominator for these disorders. Thus, it is no surprise that AD is sometimes referred to as the dyslipidemia of insulin resistance (12).

Studies indicate that AD is associated with elevated levels of hs-CRP, suggesting continuous low-grade inflammation (13,14). Inflammation plays a major role in the initiation and progression of atherosclerosis.

Altered metabolism of TG-rich lipoproteins is believed to play a key role in AD. There is overproduction and impaired clearance of VLDL from the circulation. There is also slower clearance of chylomicrons derived from the intestines. These, so-called  lipoprotein remnants, may play huge importance in the promotion of atherosclerosis in patients with AD (15).

After the release of triglycerides from VLDL, its composition changes and it becomes IDL. Then, when the amount of cholesterol increases, IDL becomes LDL.

The Dietary Approach to Atherogenic Dyslipidemia 

A very important question is whether and how different diets may improve or worsen the lipid abnormalities associated with AD.

When it comes to the classical question between carbohydrates and fats, there is certainly a lot of evidence suggesting that added sugar and refined carbohydrates are the main drivers of AD (16). High consumption of sugar and refined carbohydrates will promote VLDL production by the liver, a phenomenon, known as carbohydrate-induced hypertriglyceridemia (17). Hence, a high carbohydrate diet may further promote atherogenic dyslipidemia.

Dietary fat, on the other hand, is not a significant source of increased TG-rich lipoproteins and high-fat diets usually don’t raise fasting TG (18).

One study found that moderate carbohydrate restriction and weight loss both improved the lipid abnormalities associated with AD (19).

Another study found that substituting protein for carbohydrate decreased plasma TG in a manner that was independent of saturated fat intake but that reductions in other lipoprotein-related risk factors, including apoB and small LDL, were greatest following consumption of a low-carb-low-saturated-fat diet (20).

Evidence shows that low-fat and low-carbohydrate diets can both be used to induce weight loss. Low- and very low-carbohydrate diets are more effective for short-term weight loss than low-fat diets, although the long-term difference between these two approaches appears similar (21).

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Share
Tweet
Share